1st International Multidisciplinary Acorn as Food Workshop

CANBUN

1773

ACORN 2024 17-18 DECEMBER, 2024

Exploring acom flour as nutritional ingredient: From traditional food use to the compositional and antioxidant characterization of three oak species grown

Department of Soil, Plant and Food Science, University of Barin Ado Moro, Via Amendola, 165/a, 70126 Bari, Italy

Antonella Pasqualone*, Giacomo Squeo, Francesca Vurro, Carmine Summo*

Balanophagy

Archaeological and historical evidences show that in **antiquity** acorns were largely used as **food**

Acorn remains were found on **rotary querns** and in **cooking tools**, starting from the **3rd millennium BC**

De Re Coquinaria, a recipe book of the Roman gastronome **Apicius** (1st century AD) mentions the use of acorns in a recipe for stuffed hare

Pliny the Elder (23–79 AD), in his *Naturalis Historiae* mentioned that **roasting** acorns made them sweeter

βάλανος (balanos) = acorn; φαγία (phagía): to eat

Balanophagy over time

Acorns have been a staple food in:

- Southern Italy and Sardinia (Pinna, 2013; Zocchi et al., 2022)
- Iberian peninsula (Rakić et al., 2006)
- Poland and Baltic countries (Łuczaj, 2011)
- Türkiye, Middle East, Central Asia (Silva et al., 2016; Zocchi et al., 2022)
- Central and North America (Bainbridge, 1987)

Food use of acorns was **common** until the **second World War**

Later, acorns came to be perceived as **food for the poor** or **animal feed**

12th century relief of pigs eating acorns in the Baptistery of Parma, Italy

From decadence to revival

Now there is a revival, due to the rediscovery of phytochemicals

Acorns are valued especially by vegan and vegetarian consumers, oriented toward **organic, sustainable** and **traditional** foods, also **gluten-free**

A New Age for *Quercus* spp. Fruits: Review on Nutritional and Phytochemical Composition and Related Biological Activities of Acorns

Ana F. Vinha, João C. M. Barreira, Anabela S.G. Costa, and M. Beatriz P. P. Oliveira

A rapidly growing interest

Preparation of acorn flour

Traditional food use of acorns

Acorns were traditionally used to prepare **porridge**, **bread**, **cakes** and **coffee**-**like beverages**

In a previous study we focused on **acorn bread**

We recorded the ingredients and preparation techniques still used today or at least present in the memory of elders

Surveyed countries: Italy, Algeria, Afghanistan, Iraq, Iran and Syria

Article

Food Security beyond Cereals: A Cross-Geographical Comparative Study on Acorn Bread Heritage in the Mediterranean and the Middle East

Dauro Mattia Zocchi ^{1,*}[®], Camilla Bondioli ¹, Seyed Hamzeh Hosseini ²[®], Mohamed Djamel Miara ³, Carmelo Maria Musarella ⁴[®], Datis Mohammadi ¹, Ajmal Khan Manduzai ⁵, Kovan Dilawer Issa ⁶[®], Naji Sulaiman ⁷[®], Chadi Khatib ⁸, Hiwa M. Ahmed ^{9,10}[®], Tola Abdulsattar Faraj ^{6,11}, Hawraz Ibrahim M. Amin ^{12,13}[®], Faiq H. S. Hussain ⁶[®], Abdullah Faiz ^{1,14}, Antonella Pasqualone ¹⁵[®], Frits Heinrich ^{16,17}[®], Michele Filippo Fontefrancesco ^{1,18}[®] and Andrea Pieroni ^{1,6}[®]

Foods 2022, 11, 3898. https://doi.org/10.3390/foods11233898

https://www.mdpi.com/journal/foods

Traditional preparation of acorn bread in Sardinia,

Shelled acorns + clay + water, boiling (5 h); adding ash when almost done

> Geophagy Sardinian acorn bread «lande» Sardinian acorn biscuits for children («Fitta»)

Taking the solid part (entire acorns with some clay), shaping it as flat cakes (bread) and drying

Boiling the remaining semifluid suspension until creamy (acorn pieces and few clay), then shaping as biscuits and drying

Traditional preparation of acorn bread in Iran

In Iran and Iraq acorn bread (*kalg* or *kezke*) is traditionally eaten with dairy products (yoghurt, curd and butter), or meat products (broth, sheep head and kebab), or wild vegetables

It's a flatbread!

Flour (after spontaneous leaching of acorns for about one month changing water

Bread (a kind of pancake made of 100% acorn flour, to be eaten warm, immediately after preparation)

A recent survey carried out within the Medacornet project rescued the following

traditional food use of acorns in Apulia, dating back to the early 1900s):

Coffee substitute (made by toasted acorns, then shelling and grinding them. Prepared by boiling and filtering)

until clear)

٠

٠

Improvement of acorn bread quality

Modern consumers expect for better sensory properties. To improve them:

Add **hydrocolloids** to ensure proper volume

٠

- Mix acorn flour (15-30% max) with wheat flour, to reduce the negative impact on the rheological properties of dough
- Use **acorn sourdough**, prepared with selected autochthonous LAB

Journal of Food Measurement and Characterization (2020) 14:1754–1764 https://doi.org/10.1007/s11694-020-00423-2 ORIGINAL PAPER

Techno-functional properties of the selected antifungal predominant LAB isolated from fermented acorn (*Quercus persica*)

Hosein Purabdolah¹ · Alireza Sadeghi¹ · Maryam Ebrahimi² · Mahdi Kashaninejad¹ · Hoda Shahiri Tabarestani¹ · Jalal Mohamadzadeh³

Bioactives and nutrients of

medacorner

Composition and antioxidant characterization of three oak species grov in Apulia ACORN2024

Leaves with a lanceolate to oval shape

Brown **acorns** 1.5-2 cm long, oval

- Coastal and sub-coastal territories, inland Apennine and pre-alpine areas.
- In Apulia, from Gargano to Salento

Leaves with long, lobed, curled or wavy margins

Acorns tight ovoid shape, arranged in pairs on the same stem DIFFUSION

- · All over Italy
- Pure woods in the city of Altamura, Andria, Grumo appula, Ruvo di Puglia, Terlizzi, Foggia

Q. trojana W. (FRAGNO)

Leaves oval, elliptic or narrowly oblong, with toothed margins

Acorns massive, with a hint of hairiness on the capsule

- Northeastern Mediterranean
- Typical of the Apulian and Lucanian Murgia

MATERIALS AND METHODS

Sampling of acorns from three oak

Species Four collection sites, in the Apulia region of Southern Italy, located NW, SW and SE of the capital town, Bari

A) Quercus pubescens W. (Roverella) - masseria La Ferrata - Ruvo di

B) Quercus ilex L. (Leccio) - masseria Trazzonara - Martina Franca (Taranto)

C) Quercus trojana W. (Fragno) - masseria Pezze Mammarella - Martina Franca (Taranto)

ACORN2024

D) Quercus trojan

COMPREHENSIVE REVIEWS IN FOOD SCIENCE AND FOOD SAFETY

Proximate composition

Acorn flour properties depending on the production method and laboratory baking test results: A review

Emilia Szabłowska¹ 🛛 🕴 Małgorzata Tańska² 🕫

TABLE 3 Chemical composition of acorn flour and conventional cereal flours

REVIEWS WILEY

		Wheat flour		Rye flour		_		
Compound	Acorn flour	Whole	White	Whole	White	Buckwheat flour	Oat flour	Corn flour
Water (%)	5.4 to 22.05	6.55 to 11.7	13.7 to 14.5	11.5 to 14.5	11.1 to 14.5	4.65 to 11.7	5.03 to 10.52	10.9 to 11.4
Carbohydrates (%)	75.22 to 84.09	69.5 to 73.03	71 to 71.3	74 to 77	76.68 to 77.4	66 to 73.52	61 to 61.51	71.14 to 76.9
Sugars (%)	n.d.	2.1	1.7	2.31	0.93	n.d.	n.d.	0.6
Proteins (%)	4.32 to 5	9.5 to 13.9	7.8 to 12.6	7.31 to 9.6	5.9 to 6.28	8.73 to 17.4	6.91 to 21.5	5.5 to 6.9
Lipids (%)	8.44 to 13.86	1.3 to 3.6	1.33 to 1.8	1.28 to 2.3	1.7 to 1.9	1.81 to 3.04	4.42 to 6.1	1.22 to 3.9
Main fatty acids (%	of all fatty acids)							
Palmitic acid	14.09 to 14.98	14.2 to 27.5	18.17 to 19.74	15.95 to 19.41	15.43 to 15.99	14.3 to 15.78	16.5 to 20.62	12.62 to 14.4
Stearic acid	2.33 to 3.27	0.75 to 2.3	1.04 to 10.41	0.52 to 0.56	0.56 to 0.58	1.7 to 2.08	1.71 to 2	2.07 to 3.2
Oleic acid	59.85 to 60.92	12.73 to 24	15.5 to 31.14	16.39 to 17.34	16.48 to 18.05	34.9 to 36.53	39.2 to 41.85	26.08 to 34.4
Linoleic acid	15.34 to 15.91	49.1 to 61.36	23.74 to 61	54.58 to 56.22	56.09 to 56.17	33.01 to 38.6	26.56 to 38.5	45.2 to 54.73
Linolenic acid	0.63 to 0.84	3.94 to 5.04	1.74 to 3.71	7.15 to 9.19	7.93 to 9.3	2.5 to 3.78	0.71 to 1.4	0.9 to 2.08
Fiber (%)	10.89 to 17.9	4.5 to 12.82	2.9 to 3.9	16.71 to 12.8	6.40 to 8	0.7 to 2.18	4.05 to 6.16	2.62 to 7.3

- The acorn flours are suitable for the fortification of foods with the aim to increase the fiber content;
- The protein content in acorn flour is comparable with corn flour and from two to three times lower than in whole rye, wheat and oat flour. The acorn flour is **gluten free**, so acorn flours offers an alternative to other gluten free flours used to produce GF products

EVIEWS WILEY

Acorn flour properties depending on the production method and laboratory baking test results: A review

Emilia Szabłowska¹ 💿 🕴 Małgorzata Tańska² 💿

Proximate composition

TABLE 3 (Chemical composition of acorn flour and conventional cereal flours
-----------	--

		Wheat flour		Rye flour				
Compound	Acorn flour	Whole	White	Whole	White	Buckwheat flour	Oat flour	Corn flour
Water (%)	5.4 to 22.05	6.55 to 11.7	13.7 to 14.5	11.5 to 14.5	11.1 to 14.5	4.65 to 11.7	5.03 to 10.52	10.9 to 11.4
Carbohydrates (%)	75.22 to 84.09	69.5 to 73.03	71 to 71.3	74 to 77	76.68 to 77.4	66 to 73.52	61 to 61.51	71.14 to 76.9
Sugars (%)	n.d.	2.1	1.7	2.31	0.93	n.d.	n.d.	0.6
Proteins (%)	4.32 to 5	9.5 to 13.9	7.8 to 12.6	7.31 to 9.6	5.9 to 6.28	8.73 to 17.4	6.91 to 21.5	5.5 to 6.9
Lipids (%)	8.44 to 13.86	1.3 to 3.6	1.33 to 1.8	1.28 to 2.3	1.7 to 1.9	1.81 to 3.04	4.42 to 6.1	1.22 to 3.9
Main fatty acids (%	of all fatty acids)							
Palmitic acid	14.09 to 14.98	14.2 to 27.5	18.17 to 19.74	15.95 to 19.41	15.43 to 15.99	14.3 to 15.78	16.5 to 20.62	12.62 to 14.4
Stearic acid	2.33 to 3.27	0.75 to 2.3	1.04 to 10.41	0.52 to 0.56	0.56 to 0.58	1.7 to 2.08	1.71 to 2	2.07 to 3.2
Oleic acid	59.85 to 60.92	12.73 to 24	15.5 to 31.14	16.39 to 17.34	16.48 to 18.05	34.9 to 36.53	39.2 to 41.85	26.08 to 34.4
Linoleic acid	15.34 to 15.91	49.1 to 61.36	23.74 to 61	54.58 to 56.22	56.09 to 56.17	33.01 to 38.6	26.56 to 38.5	45.2 to 54.73
Linolenic acid	0.63 to 0.84	3.94 to 5.04	1.74 to 3.71	7.15 to 9.19	7.93 to 9.3	2.5 to 3.78	0.71 to 1.4	0.9 to 2.08
Fiber (%)	10.89 to 17.9	4.5 to 12.82	2.9 to 3.9	16.71 to 12.8	6.40 to 8	0.7 to 2.18	4.05 to 6.16	2.62 to 7.3

The acorn flours are characterized by higher **lipid content** respect to the conventional cereal flours. This is an important aspect that makes the acorn flours suitable for food formulation in which oils was added. When refined oils are added in the formulation a general improvement on the quality of the lipid fraction could be reached.

Proximate composition

The chemical composition of the acorn flour is influenced by the species and the environmental conditions

Parameter (g/100 g d.m.)	Quercus ilex L. (Leccio)	Quercus pubescens W. (Roverella)	Quercus trojana W. (Fragno - Santeramo)	Quercus trojana W. (Fragno - Martina)
Lipid	5.21±0.08b	5.39±0.04b	3.67±0.35c	6.23±0.15a
Ashes	1.94±0.18ab	2.32±0.03a	2.13±0.18ab	1.78±0.18b
Carbohydrates	89.60±0.15a	85.87±0.24d	88.73±0.48b	86.63±0.11c
Fiber	7.35±0.97d	11.57±0.36b	9.56±0.17c	14.52±0.31a
Protein	3.26±0.11c	6.42±0.17a	5.47±0.04b	5.36±0.08b

Different letters in the same row indicate significant differences at p < 0.05.

The main amino acids were **Aspartic acid** and **Glutamic acid**

Aminoacid composition

FAO/WHO (2013) amino acid reference pattern of proteins for adult diet. Values are given as % of protein. Each amino acid in the reference pattern was presumed to score a value = 100. Values are expressed relatively to the reference pattern

medacorner

Amino	Refere	Quercus ilex	Quercus	Quercus trojana	Quercus trojana
acid	nce	(Leccio)	pubescens	(Fragno,	(Fragno,
	pattern		(Roverella)	Santeramo)	Martina)
His	1.6	507.19	470.15	379.01	790.41
Thr	2.5	207.42	112.86	143.11	237.21
Cys	2.3	341.25	165.93	219.95	220.90
Val	4	121.28	114.80	121.13	114.47
Phe	4.1	194.03	104.48	129.50	172.57
lso	3	174.75	144.54	164.19	148.86
Leu	6.1	122.09	142.85	124.99	99.29
Lys	4.8	53.63	72.85	43.58	81.12

Fatty acid composition

Fatty acids %	Quercus ilex L. (Leccio)	Quercus pubescens W. (Roverella)	Quercus trojana W. (Fragno - Santeramo)	Quercus trojana W. (Fragno - Martina)	%	Quercus ilex L. (Leccio)	Quercus pubescens W. (Roverella	Quercus trojana W. (Fragno - Santeramo	Quercus trojana W. (Fragno - Martina)
C13:0	0.14±0.01a	0.12±0.00a	0.11±0.00a	0.17±0.04a		58.22±0.05	63.05±0.00	58.93±0.81	62.75±0.1
C14:0	0.12±0.01b	0.08±0.00c	0.11±0.02bc	0.20±0.01a	∑MUFA	с	а	b	9a
C14:1	0.12±0.00b	0.05±0.00c	0.05±0.00c	0.29±0.05a		19.63±0.13	19.36±0.09	18.99±0.01	20.77±0.0
C16:0	19.61±0.08a	14.98±0.12b	19.41±0.19a	14.06±0.15c	<i>POFA</i>	b	b	b	1a
C16:1	0.32±0.00a	0.11±0.00b	0.14±0.00b	0.18±0.05b	VSEA	22.15±0.08	17.59±0.09	22.08±0.19	16.49±0.2
C17:0	0.14±0.00c	0.26±0.01a	0.14±0.01c	0.20±0.01b		a um of saturated f	b attv acids: ∑MUF	a A. sum of monour	Oc saturated
C17:1	0.13±0.01ab	0.10±0.01b	0.16±0.02a	0.11±0.03b	Differer	atty acids; ∑PUF/	A, sum of polyuns	saturated fatty acid	ls.
C18:0	1.92±0.02b	1.85±0.02c	2.07±0.03a	1.67±0.01d	Dinoron		0.05.	significant anteren	
C18:1	57.42±0.05c	62.75±0.00a	58.53±0.21b	62.04±0.37a					
C18:2T	0.43±0.00a	0.13±0.00c	0.14±0.01bc	0.21±0.06b					
C18:2	17.79±0.13bc	17.87±0.07b	17.15±0.06c	18.96±0.10a					
C18:3 (n-3)	1.40±0.01c	1.36±0.02c	1.69±0.06a	1.60±0.04b					
C20:0	0.23±0.03bc	0.29±0.00a	0.24±0.02b	0.19±0.00c					
C20:1	0.22±0.00a	0.05±0.00c	0.05±0.00c	0.13±0.04b					

Fattyacidcompositionandstoragecondition

Work package number	4	Ι	lead bei	neficiary	y			UE	BA		
Work package title	Study of	of storag	e and co	nservati	on condi	itions of	acorn fl	ours and	l granula	ites	
Participant number	1	2	3	4	5	6	7	8	9	10	11
Participant short name	LT	IPLei	IPB	MORE	UBA	UO	BU	UAE	UTM	MECAC	GEOAI
PM/participant	0	2	0	0	9	0	0	0	0	0	0
Start month		0	9		End n	nonth			36		
Objectives: WP4 aims to	i) opti	mise the	e storag	e and co	onservat	ion con	ditions of	of acom	flours	and gra	nulates
produced in WP2; ii) mor	nitor the	potentia	al oxidat	tive degr	radation	of the 1	products	during	storage;	iii) ass	ess the
secondary shelf-life of the p	products										

Bioactive compounds

Food Research International 114 (2018) 208-213

Antioxidant activity, tocopherols and polyphenols of acornoil obtained from *Quercus* species grown in Algeria

Fatima Z. Makhlouf^a, Giacomo Squeo^b, Malika Barkat^a, Antonio Trani^c, Francesco Caponio^{b,*}

^a Laboratoire Bioqual, INATAA, Université Frères Mentouri Constantine 1, Route de Ain El-Bey, 25000 Constantine, Algeria
^b Department of Soil, Plant and Food Sciences, Pood Science and Technology Unit, University of Bari Aldo Moro, Via Amendola, 165/A, 70126 Bari, Italy
^c CHEAM, International Center for Advanced Mediterranean Agronomic Studies of Bari, Laboratory of Environmental and Agricultural Chemistry, Via Ceglie, 9, 70010, Valerzano, Bari, Italy

Table 2. Concentration of tocopherols, phenolics and pigments in *Quercus* oils (mg kg⁻¹ oil).

Tocopherols	QI	QS	QC
α-tocopherol	244.66±6.51 ^a	126.9±5.25 ^c	138.09 ± 4.64^{b}
$(\beta + \gamma)$ -tocopherols	403.59 ± 5.87^{b}	389.60±4.42 ^c	422.02 ± 2.42^{a}
δ-tocopherol	16.33 ± 0.90^{b}	13.66±1.61 ^c	19.73±0.33 ^a
Total tocopherols	664.58 ± 13.29^{a}	530.16±11.32 ^c	579.84±7.41 ^b
TPC*	121.32±10.90 ^c	187.60 ± 9.14^{b}	299.29 ± 13.60^{a}
Chlorophylls	1.88 ± 0.01^{b}	2.03 ± 0.01^{a}	1.10 ± 0.02^{c}
Carotenoids	42.29 ± 1.46^{b}	66.33±0.90 ^a	43.13 ± 0.60^{b}

QI, Quercus ilex L.; QS, Quercus suber L.; QC, Quercus coccifera L.

Bioactive compounds	Quercus ilex L. (Leccio)	Quercus pubescens W. (Roverella)	Quercus trojana W. (Fragno -	<i>Quercus trojana</i> W. (Fragno - Martina)
TPC (mg GAE/g	55.78±2.72a	18.15±0.55c	22.95±1.89b	20.01±0.07bc
DPPH (µmol TE/g	233.84±5.21a	147.93±2.53bc	143.94±13.99c	164.07±0.59b
ABTS (µmol TE/g	130.00±2.87a	45.54±0.77c	57.12±1.98b	46.30±1.23c
βά γ- tocoferols (mailing of STPC =	3206.32±147.61a Total phenolic content; T.E. = Trolox of ethylbenzthiazoline-6-sulphonic ac	2191.53±21.97b equivalents; DPPH = 2.2-diphenyl-1	2037.14±0.10bc	1934.18±18.70c =2.2'-azino-bis-3- < 0.05.

Acorn flour is a **novel and healthy ingredient**, potentially applicable in food formulations.

In the present study **biscuits** with acorn flour were proposed

MIGHLIGHTS

	Contents lists available at ScienceDirect	
	Heliyon	Heliy
ELSEVIER	journal homepage: www.heliyon.com	
Effect of acorn flour of biscuits	r on the physico-chemical and sensory properties	Check for updates
Effect of acorn flour of biscuits Antonella Pasqualone ^{a,*} , Carmine Summo ^a , Giacor	r on the physico-chemical and sensory properties Fatima Z. Makhlouf ^{b,**} , Malika Barkat ^b , Graziana Difonzo ^a , mo Squeo ^a , Francesco Caponio ^a	Check for updates

Biscuits formulated with 30% or 60% of acorn flours from *Quercus coccifera* L. were characterized by higher content of **phenolics, antioxidant activity and oxidative stability** than control biscuits, prepared without acorn flour

CONCLUSIONS

- The nutritional composition of the acorn flours is influenced by several botanical and environmental factors that makes the composition variable.
- The high **fiber** content makes the acorn flours suitable for the fortification of bakery foods with the aim to increase the fibre content.
- The high amount and good quality of the lipid fraction, in terms of fatty acid composition, makes acorn flour potentially applicable to products that typically include oils in their formulation.

The absence of gluten in the protein fraction is an interesting aspect for the use of the acorn flours in gluten free bakery products.

The high level of bioactive compounds, in particular tocopherols and phenols, is relevant for functional foods.

UNIVERSITÀ degli studi di bari ALDO MORO

Thank you for your time and

UBA team: Carmine Summo, Antonella Pasqualone, Giacomo Squeo and Francesca Vurro